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ABSTRACT

We present a novel full-vector beam-propaga-
tion method where the discretization of Maxwell’s
equations is performed by finite integration
(FIBPM). This allows to include thin layers of
complex permittivity without increasing mesh
density. A FIBPM code for a massively parallel
computer has been developed and applied success-
fully to laser diode structures.

INTRODUCTION

Design and optimization of active and pas-
sive optoelectronic devices require simulation of
the propagating electromagnetic field. For the
analysis of complex waveguide structures, beam-
propagation methods (BPM) are well established.
They are based on a successive computation of the
transverse electromagnetic field distribution along
the direction of propagation [1]. The original
BPM solves the scalar wave equation using FFT
to perform the propagation of the field through
the waveguide structure {2]. Recently various full-
vector beam-propagation methods based on finite
differences have been developed for the analysis
of polarization-sensitive structures. The propaga-
tion algorithms are based on the method of lines
(MOL) [3], finite difference schemes [4, 5, 6] or on
Taylor expansion of the matrix-valued exponential
function [7]. In any case, the computational effort
for the evaluation of the propagating field is con-
siderable. Particularly, waveguide cross-sections
containing small details such as quantum wells re-
sult in a huge mesh size, and thus way to pro-
hibitive numerical efforts. This problem is ad-
dressed by the method presented here.
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THEORY

The new basic feature of the FIBPM is that
the discretized equations are derived from finite
integration, i.e., from integration over elementary
cells, rather than from differentiation as done in
the common Finite-Difference BPM. This enables
one to treat optically thin layers without decreas-
ing mesh size to the thickness’ order of magnitude.
The approach is described below.

Analytical Derivation of the FIBPM

Discretization is performed by dividing the
waveguide structure into rectangular elementary
cells of variable size (graded mesh). The thickness
of these elementary cells in longitudinal direction
is supposed to be infinitesimally small. Within
the elementary cells the field components are sam-
pled according to Yee [8]. In order to derive the
propagation equation, we start from the integral
form of Maxwell’s equations in frequency domain
postulating a non-magnetic and isotropic medium.
By integrating the fields over the elementary cells
as has been shown in [9] we obtain equations re-
lating the discretized field components. The re-
maining part of the derivation follows the well-
known beam-propagation approach under parax-
ial approximation [7]. For propagation, however,
we use an algorithm based on the expansion of
the matrix exponential into a series of Chebyshev
polynomials, which permits arbitrary propagation
steps Az [10, 11, 12], and thus enhances efficiency.

Inclusion of Thin Layers

Reducing the transverse discretization steps,
CPU time grows not only because of the increas-
ing matrix size, but also because convergence
slows down. For this reason, the performance
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of finite-difference beam-propagation methods is
not satisfactory for waveguide structures contain-
ing very thin layers (e. g. quantum wells). Be-
cause our propagation method is derived by finite
integration, it allows the inclusion of thin lay-
ers by effective parameters in a straightforward
manner. Hence, the discretization steps need not
resolve the layers’ thickness, whereby the above-
mentioned problem is avoided. The approxima-
tion of the integral [ e EdA across the elementary
cell 7 with the integration area A; yields &; EX A A,
where Z; is the mean value of ¢ accross A*. For
the evalution § E(s)ds along an elementary inte-
gration path, we make use of the continuity of the
normal component of the electric displacement D,
across discontinuities of ¢ and write

s;i+As; /2 si+As; /2 si+As; [2
— 1 ~ 3 1
[ Bas = [ ipas~pi [ tas
si—As; [2 si—As;f2 si—Asi[2
si+As;[2
= Eig l4s = Ei Rs; ,
s;i—As; [2

(1)

where As; is either Az; or Ay,.

We thus obtain the effective parameters z;,
Az; und Ay,, which allow us to treat discontin-
uous variations of the permittivity ¢ within the
elementary cells.

Massive Parallelization

The code of the FIBPM is designed for the
massively parallel computer DECmpp12000 with
an array of 4096 processors. By mapping the dis-
cretization mesh on the processor array each ele-
mentary cell is associated with an elementary pro-
cessor. The evaluation of the expansion terms is
performed simultaneously for all elementary cells
(Single Instruction Multiple Data: SIMD). Be-
cause only neighbouring field components are in-
terconnected, the exchange of data is limited to
the communication between neighbouring proces-
sors. Thus the massively parallel architecture is
used efficiently.

RESULTS

In order to check the new method and to
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Fig. 1: Structure of planar waveguide that was
used to obtain the results Tab. 1

Method:jjanalytical FiIBPM mean value
Neff Teff 1 é,,ﬁ?ﬁ Tleff | %ﬁ
Structure 1:
TE 1.05841 |1.05825(3.8-10~°|same as FIBPM
™ 1.05439 {1.05467|6.6-10*|same as FIBPM
Structure 2:
TE 1.06217 {1.06204/1.2-10~4[1.06198[1.8-10~%
™™ 1.05763 |1.05787/2.2.10~4(1.05802(3.7-10—4
Structure 3:
TE 1.06221 [1.06217:3.8-10~°[1.06198]2.2-10~%
™ 1.05743 [1.05762|1.8-10~%(1.05802(5.6-10~*

Tab. 1: Inclusion of thin layers: Comparison of
FIBPM with mean value approximation;
Effective index and normalized propaga-
tion constant of TE and TM fundamental
modes of the planar waveguide in Fig. 1;
Discretization Az = 0.1X; ng = 1.0, ny =
V1.2, di = 0.50), ds = 0.12); Struc-
ture 1: dy = 0; Structure 2: ny = /1.3,
dy = 0.04A; Structure 3: V14,
dg = 0.02).

n2

demonstrate its benefits in treating thin layers, we
calculated the propagation constants of the planar
waveguide in Fig. 1 for various values of dy. Ta-
ble 1 compares results of the FIBPM to results
of a simplified method where the thin layer is in-
cluded by the mean value of ¢ in the elementary
cell. Table 1 shows that by using the thin-layer ap-
proximation, as described in the above section, the
error of the FIBPM is reduced to the discretiza-
tion error. With decreasing dy the advantage of
the FIBPM over the mean value method increases
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Fig. 3: Lateral ARROW structure on which the field calculation in Fig. 4 is based

further.

To examine the coupling between orthogonal
field components we simulated a buried wave-
guide. Figure 2 shows the field distribution of
the fundamental mode. To. check the FIBPM
for a more complex waveguide structure we simu-
lated a lateral ARROW (Anti Resonant Reflecting
Optical Waveguide) structure. High-power laser
diodes of this type are developed at the Ferdinand-
Braun-Institut. For details of the structure, see
Fig. 3. The cross-section was discretized by 64 X
128 cells, where Az = 88.1nm and Ay = 75.0nm.
The propagation step was Az = 4um. Figure 4
shows the near field of the TE fundamental mode.

CONCLUSIONS

A full-vector beam-propagation method based
on finite integration is presented. The method
is especially suited for structures containing very
thin layers such as quantum wells. Chebyshev ex-
pansion of the matrix exponential permits arbi-
trary propagation steps Az, thus increasing the
numerical efficiency of the propagation algorithm
considerably. A code for running the simulation
on a massively parallel computer was developed.
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Results for typical structures are presented. The
method proves to be a versatile tool for the ef-
ficient simulation of optical waveguide structures
with cross-sections of complex geometry.
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